

EOP400-FR4

400Gb/s OSFP56 FR4 2km SMF Optical Transceiver

PRODUCT FEATURES

- Supports 425Gbps
- > Single 3.3V Power Supply
- > Up to 2km over SMF with KP4 FEC
- > supported at the Host side
- Duplex LC connector
- > 8x53.125Gbps (PAM4) electrical interface
- > PIN and TIA array on the receiver side
- Power dissipation < 8W</p>
- Case temperature range: 0°C to 70°C (commercial)
- Safety Certification: TUV/UL/FDA*1
- RoHS Compliant

APPLICATIONS

- > 400G Ethernet
- > 400G-FR4 applications
- Data center
- InfiniBand

DESCRIPTIONS

ETU-Link's OSFP transceiver module is designed for use in 400 Gigabit Ethernet links over 2km single mode fiber. The module has 8 independent electrical input/output channels operating up to 53.125Gbps per channel. The integrated GearBox in module converts the 8 channels of 53.125Gbps (PAM4) electrical input data to 4 channels of parallel optical signals, each capable of 106.25Gbps (PAM4) operation for an aggregate data rate of 400Gb/s. The four transmitter/receiver units operate on the ITU G.694.2 CWDM grid near 1300nm. The transmitter path of the module incorporates a bi-directional PAM4 re-timer ASIC integrated with a 4-channels modulator driver, 4 externally modulated lasers and one optical multiplexer. On the receiver path, an optical de-multiplexer is coupled to 4 photodiodes, along with the PAM4 re-timer that built-in 4-channel TIA array. The electrical interface of the module is compliant with the 400GAUI-8 interface as defined by IEEE 802.3bs, and compliant with OSFP MSA.

Module Block Diagram

Ordering Information

Part No.	Description
EOP400-FR4	400Gb/s OSFP56 FR4 2km SMF Optical Transceiver

Absolute Maximum Ratings

Stress in excess of any of the individual Absolute Maximum Ratings can cause immediate catastrophic damage to the module even if all other parameters are within Recommended Operating Conditions. It should not be assumed that limiting values of more than one parameter can be applied to the module concurrently. Exposure to any of the Absolute Maximum Ratings for extended periods can adversely affect reliability.

Parameter	Symbol	Min	Typical	Мах	Units	Notes
Storage Temperature	Ts	-40		85	°C	
3.3 V Power Supply Voltage	Vcc	-0.5	3.3	3.6	V	
Data Input Voltage - Single Ended		-0.5		Vcc+0.5	V	
Data Input Voltage - Differential				0.8	V	1
Relative Humidity	RH	5		95	%	

Note:

1. This is the maximum voltage that can be applied across the differential inputs without damaging the input circuitry. The damage threshold of the module input shall be at least 1600 mV peak to peak differential.

Recommended Operating Conditions

For operations beyond the recommended operating conditions, optical and electrical characteristics are not defined, reliability is not implied, and such operations for a long time may damage the module.

Parameter	Symbol	Min	Typical	Max	Units	Notes
Operating case temperature	Тс	0		70	°C	1
Storage temperature	Ts	-40		+85	°C	
Power supply voltage	Vcc	3.135	3.3	3.465	V	
Power dissipation	PD			8	W	
Electrical Signal Rate per Channel (PAM encoded)			26.5625		GBd	2
Optical Signal Rate per Channel (PAM encoded)			53.125		GBd	3
Power Supply Noise				66	mVpp	4
Receiver Differential Data Output Load			100		Ohm	
Fiber Length (9um SMF)				2	km	5

Note:

Optical Communications Products Alliance

1. 400GAUI-8 operation with Host generated FEC. The transmitter must receive pre-coded FEC signals from the host ASIC.

2. 400G FR4 operation with Host generated FEC. The transmitter must receive pre-coded FEC signals from the host ASIC.

3. Power Supply Noise is defined as the peak-to-peak noise amplitude over the frequency range at the host supply side of the recommended power supply filter with the module and recommended filter in place. Voltage levels including peak-to-peak noise are limited to the recommended operating range of the associated power supply. See Figure 7 for recommended power supply filter.

4. 9µm SMF. The maximum link distance is based on an allocation of 1dB of attenuation and 3dB total connection and splice loss. The loss of a single connection shall not exceed 0.5dB.

Electrical Characteristics

Unless otherwise stated, the following characteristics are defined under recommended operating conditions.

Parameter	Symbol	Min	Typical	Max	Units	Notes
Transceiver Power Consumption				8	W	
Transceiver Power Supply Current, Total				2550	mA	
AC coupling capacitors (Internal)			0.1		uF	

Note:

1. For control signal timing including LPWn/PRSn, INT/RSTn, SCL and SDA see Control Interface Section

Reference Points

Test Point	Description
TP0 to TP5	The channel including the transmitter and receiver differential controlled impedance
	printed circuit board insertion loss and the cable assembly insertion loss.
TP1 to TP4	All cable assembly measurements are made between TP1 and TP4 as illustrated in
	Figure 3.
	A mated connector pair has been included in both the transmitter and receiver
TP0 to TP2	specifications defined in 802.3ck 162.9.3 and 162.9.4. The recommended maximum
TP3 to TP5	insertion loss from TP0 to TP2 or from TP3 to TP5 including the test fixture is provided in
	802.3ck 162.9.3.2
TP2	Unless specified otherwise, all transmitter measurements defined in 802.3-2022 151.7.1
	are made at TP2 utilizing the test fixture specified in Annex 120E.
TP3	Unless specified otherwise, all receiver measurements and tests defined in 802.3-2022
	151.7.12 are made at TP3 utilizing the test fixture specified in Annex 120E.

ETU-LIN 易天·光通信

Optical Communications Products Alliance

High Speed Electrical Input Characteristics

The following characteristics are defined over the Recommended Operating Conditions unless otherwise noted.

Parameter	Test Point	Typical	Min.	Max.	Unit	Conditions
Signaling Rate, Per Lane	TP1		26.5625		GBd	+/- 100 ppm
(PAM4 encoded)						

Optical Communications Products Alliance

Differential peak-peak Input Voltage Tolerance	TP1a		900		m∖	,
Differential-mode to	TP1		Equation		dB	802.3bs
common-mode return loss			(83E-6)			120E.3.4
Differential termination mismatch	TP1			10) %	
Module stressed input	TP1a		See			802.3bs
tolerance			120E.3.4.1			120E.3.4
Single-ended voltage tolerance range	TP1a		-0.4	3.3	3 V	
DC common-mode voltage tolerance range	TP1		-350	285	i0 m∖	·
	Module stressed i	nput toleranc	e test :			
Applied peak-peak		Table		6	302.3bs	
sinusoidal jitter		120E-6		1	120E.3.	4.1
	Eye 32		he	eight r	nV	802.3bs 120E.3.4.1

High Speed Electrical Output Characteristics

The following characteristics are defined over the Recommended Operating noted.

Parameter	Test Point	Min.	Typical	Max.	Unit	Note
Signaling Rate, Per Lane (range)	TP4		26.5625		GBd	1
			±100 ppm			
AC common-mode output voltage	TP4			17.5	mV	
Differential peak-to-peak input	TP4			900	mV	
voltage(min)						
Eye height	TP4	30			mV	
Common-mode to differential-mode	TP4	Equation			dB	
return loss		(83E-3)				
Differential termination mismatch	TP4			10	%	
Transition time	TP4	9.5			ps	
DC common-mode voltage tolerance	TP4	-0.35		2.85	V	

Note:

1. The signaling rate range is derived from the PMD receiver input.

High Speed Optical Transmitter Characteristics

The following characteristics are defined over the Recommended Operating Conditions unless otherwise noted.

Optical Characteristics @TP2 Test Point

Parameter	Symbol	Min.	Typical	Max.	Unit	
Signaling speed per lane			53.125±			
			100ppm		GBd	
Modulation format			PAM4			
Lane_1 Center Wavelength	λ_{C0}	1264.5	1271	1277.5	nm	
Lane_2 Center Wavelength	λ_{C1}	1284.5	1291	1297.5	nm	
Lane_3 Center Wavelength	λ_{C2}	1304.5	1311	1317.5	nm	
Lane_4 Center Wavelength	λ _{C3}	1324.5	1331	1337.5	nm	r
Side-mode Suppression Ratio	SMSR	30			dB	
Total average launch power				9.3	dBm	
Average launch power, each lane	TxAVG	-3.3		3.5	dBm	1
Outer Optical Modulation Amplitude (OMA _{outer}), each lane	TxOMA	-0.3		3.7	dBm	2
Difference in launch power between any				4	dB	
two lanes (OMA _{outer})						
Launch power in OMA _{outer} minus TDECQ,						
each lane:		-1.7			dBm	
for extinction ratio \geq 4.5 dB		-1.6				
for extinction ratio < 4.5 dB						
Transmitter and dispersion eye closure for PAM4 (TDECQ) , each lane	TDECQ			3.4	dB	
TDECQ – 10*log ₁₀ (Ceq), each lane				3.4	dB	
TDECQ-TECQ				2.5	dB	
Average launch power of OFF transmitter,	,			-30	dBm	
each lane						
Extinction Ratio	ER	3.5			dB	
Transmitter transition time				17	ps	
RIN _{17.1} OMA				-136	dB/Hz	
Optical return loss tolerance				17.1	dB	
Transmitter reflectance				-26	dB	

Note:

1. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.

2. Even if the TDECQ < 1.4 dB for an extinction ratio of \geq 4.5 dB or TDECQ < 1.3 dB for an extinction ratio of < 4.5 dB, the OMA_{outer} (min) must exceed this value.

3. Transmitter reflectance is defined looking into the transmitter

Optical and Characteristics

Parameter	Symbol	Min.	Typical	Max.	Unit	
Signaling speed per lane						
			53.125±100ppm		GBd	
Modulation format			PAM4			
Lane_1 Center Wavelength	λ_{C0}	1264.5	1271	1277.5	nm	
Lane_2 Center Wavelength	λ _{C1}	1284.5	1291	1297.5	nm	
Lane_3 Center Wavelength	λ _{C2}	1304.5	1311	1317.5	nm	
Lane_4 Center Wavelength	λ_{C3}	1324.5	1331	1337.5	nm	
Damage threshold each lane		5.4			dBm	1
Average receive power each lane	RxAVG	-7.3		3.5	dBm	2
Receive Power (OMA _{outer}) each lane	RxOMA			3.7	dBm	
Difference in receive power between				4.1	dB	
any two lanes (OMA _{outer})						
Receiver reflectance				-26	dB	
Receiver sensitivity (OMA _{outer}), each						3
lane						
for TDECQ<1.4dB	SenOMA			-4.6	dBm	
for 1.4dB <tecq<3.4db< td=""><td></td><td></td><td></td><td>TECQ-6.0</td><td></td><td></td></tecq<3.4db<>				TECQ-6.0		
LOS Assert	LOSA	-15			dBm	
LOS De-Assert	LOSD			-10	dBm	
LOS Hysteresis dB					0.5	

Note:

1. The receiver shall be able to tolerate, without damage, continuous exposure to an optical signal having this average power level. The receiver does not have to operate correctly at this input power.

2. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.

3. Measured with conformance test signal at TP3 for the BER specified in IEEE 802.3-2022 clause 151.7.12.

Pin Diagram

Pin Definitions

Pin	Logic	Symbol	Description	Plug Sequence	Notes
1		GND	Ground	1	1
2	CML-I	Tx2p	Transmitter Data Non-Inverted	3	
3	CML-I	Tx2n	Transmitter Data Inverted	3	
4		GND	Ground	1	1
5	CML-I	Тх4р	Transmitter Data Non-Inverted	3	
6	CML-I	Tx4n	Transmitter Data Inverted	3	
7		GND	Ground	1	1
8	CML-I	Тх6р	Transmitter Data Non-Inverted	3	
9	CML-I	Tx6n	Transmitter Data Inverted	3	
10		GND	Ground	1	1
11	CML-I	Тх8р	Transmitter Data Non-Inverted	3	
12	CML-I	Tx8n	Transmitter Data Inverted	3	
13		GND	Ground	1	1
14	LVCMO S-	SCL	2-wire Serial interface clock	3	2

	I/O				
15		VCC	+3.3V Power	2	
16		VCC	+3.3V Power	2	
17	Multi-Le	LPWn/PRSn	Low-Power Mode/Module Present	3	
	vel				
18		GND	Ground	1	1
19	CML-O	Rx7n	Receiver Data Inverted	3	
20	CML-O	Rx7p	Receiver Data Non-Inverted	3	
21		GND	Ground	1	1
22	CML-O	Rx5n	Receiver Data Inverted	3	
23	CML-O	Rx5p	Receiver Data Non-Inverted	3	
24		GND	Ground	1	1
25	CML-O	Rx3n	Receiver Data Inverted	3	
26	CML-O	Rx3p	Receiver Data Non-Inverted	3	
27		GND	Ground	1	1
28	CML-O	Rx1n	Receiver Data Inverted	3	
29	CML-O	Rx1p	Receiver Data Non-Inverted	3	
30		GND	Ground	1	1
31		GND	Ground	1	1
32	CML-O	Rx2p	Receiver Data Non-Inverted	3	
33	CML-O	Rx2n	Receiver Data Inverted	3	
34		GND	Ground	1	1
35	CML-O	Rx4p	Receiver Data Non-Inverted	3	
36	CML-O	Rx4n	Receiver Data Inverted	3	
37		GND	Ground	1	1
38	CML-O	Rx6p	Receiver Data Non-Inverted	3	
39	CML-O	Rx6n	Receiver Data Inverted	3	
40		GND	Ground	1	1
41	CML-O	Rx8p	Receiver Data Non-Inverted	3	
42	CML-O	Rx8n	Receiver Data Inverted	3	
43		GND	Ground	1	1
44	Multi-Le	INT/RSTn	Module input/Module Reset	3	
	vel				
45		VCC	+3.3V Power	2	
46		VCC	+3.3V Power	2	

Optical Communications Products Alliance

47	LVCMO	SCL	2-wire Serial interface Data	3	2
	S-I/O				
48		GND	Ground 1		1
49	CML-I	Tx7n	Transmitter Data Inverted 3		
50	CML-I	Tx7p	Transmitter Data Non-Inverted 3		
51		GND	Ground 1 1		1
52	CML-I	Tx5n	Transmitter Data Inverted 3		
53	CML-I	Tx5p	Transmitter Data Non-Inverted 3		
54		GND	Ground	1	1
55	CML-I	Tx3n	Transmitter Data Inverted	3	
56	CML-I	Тх3р	Transmitter Data Non-Inverted 3		
57		GND	Ground 1		1
58	CML-I	Tx1n	Transmitter Data Inverted 3		
59	CML-I	Tx1p	Transmitter Data Non-Inverted 3		
60		GND	Ground	1	1

Note:

1. OSFP uses common ground (GND) for all signals and supply (power). All are common within the OSFP module and all module voltages are referenced to this potential unless otherwise noted.

2. Open-Drain with pull up resistor on Host.

Recommended Interface Circuit

Mechanical Diagram

The bellow picture shows the location of the hottest spot for measuring module case temperature. In addition, the digital diagnostic monitors (DDM) temperature is also calibrated to this spot.

TBD

The optical interface port is a Duplex LC connector.

Module Optical Interface (looking into the optical port)

Revision History

Version No.	Date	Description	
1.0	February 18, 2023	Preliminary datasheet	
2.0	July 28,2024	Product upgrades	

Company: ETU-Link Technology Co., LTD

Production base: Right side of 3rd floor, No. 102 building, Longguan expressway, Dalang street,

Longhua District, Shenzhen city, GuangDongProvince, China 518109

R&D base: Floor 4, Building 4, Nanshan Yungu Phase Ll, Taoyuan Community, XiliStreet,Nanshan District, Shenzhen

Tel: +86-755 2328 4603

Addresses and phone number also have been listed at www.etulinktechnology.com.

Please e-mail us at sales@etulinktechnology.com or call us for assistance.